Presentation Name: A quick numerical trip to spherical t-designs
Presenter🍸: 安聪沛 教授
Date: 2021-01-15
Location: 腾讯会议ID: 187364013, 密码: 200433
Abstract🏊:
We draw our attention on the unit sphere in three dimensional Euclidean space. A set X_N of N points on the unit sphere is a spherical t-design if the average value of any polynomial of degree at most t over X_N is equal to the average value of the polynomial over the sphere. The last forty years have witnessed prosperous developments in theory and applications of spherical t-designs. Let integer t>0 be given. The most important question is how to construct a spherical t-design by minimal N. It is commonly conjectured that N=/frac{1}{2}t^2+o(t^2) point exists, but there is no proof. In this talk, we firstly review recent results on numerical construction of spherical t-designs by various of methods: nonlinear equations/interval analysis, variational characterization, nonlinear least squares, optimization on Riemanninan manifolds. Secondly, numerical construction of well-conditioned spherical t-designs are introduced for N is the dimension of the polynomial space. Consequently, numerical approximation to singular integral over the sphere by using well-conditioned spherical t-designs are also discussed.

海报

Annual Speech Directory♉️: No.16

220 Handan Rd., Yangpu District, Shanghai ( 200433 )| Operator👰‍♂️📰:+86 21 65642222

Copyright © 2016 FUDAN University. All Rights Reserved

杏悦专业提供👳‍♂️:杏悦🚎、🥟、等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流🧙‍♂️,杏悦欢迎您。 杏悦官网xml地图
杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦