Presentation Name😭: Restrictions for solutions of the heat equations with Newton-Sobolev data on metric measure spaces
Presenter: 袁文 教授
Date🦵🏻: 2017-04-27
Location: 光华东主楼1501
Abstract:

On a complete doubling metric measure space $(X,d,/mu)$ supporting the weak Poincaré inequality, by  establishing some capacitary strong-type inequalities for the Hardy-Littlewood maximal operator, we characterize the measure $/nu$ on the space $X/times(0,/infty)$ so that the mapping $f/mapsto /int_{X} p_{t}(/cdot,y)f(y) d/mu(y)$, is bounded from the Newton-Sobolev space $N^{1,p}(X)$ with $p/in [1,/infty)$ into the Lebesgue space $L^q(X/times(0,/infty),/nu)$ with $q/in(0,/infty)$, where the kernels $p_t$  are some generalized heat kernels. This result generalizes the Carleson embeddings obtained in [J. Differential Equations 224 (2006), 277-295], and also provides a priori estimate of the solution of heat equations with Newton-Sobolev data on many metric measure spaces $X$ such as complete Riemannian manifolds and fractals.

海报

Annual Speech Directory: No.60

220 Handan Rd., Yangpu District, Shanghai ( 200433 )| Operator:+86 21 65642222

Copyright © 2016 FUDAN University. All Rights Reserved

杏悦专业提供:杏悦等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,杏悦欢迎您。 杏悦官网xml地图
杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦